Feeds

Germans demo working quantum register

Qubits behave themselves impeccably

  • alert
  • submit to reddit

A new approach to endpoint data protection

Physicists at the University of Bonn have successfully demonstrated a five-qubit quantum register, using neutral atoms.

Registers are the central memory of a computer, in which information is stored in 1s and 0s. Neutral atoms are considered natural candidates for building a register because they can exist in an abundance of quantum states, and these individual states can be manipulated relatively simply. (Not to mention the fact that they can be counted – quite a useful property, when building a register.)

In Physical Review Letters, the researchers explain how they set up the register experimentally. You can access their paper here.

The team cooled five caesium atoms until they were almost stationary, and then loaded them into an optical lattice. An optical lattice is a light grid created by the interference of two or more laser beams. More poetically, it can be thought of as an "artificial crystal of light". In this particular case, the researchers loaded the atoms on to a so-called standing wave trap.

This lattice can trap the neutral atoms in potential wells because the electric fields of the lasers induce a dipole moment in the atom. Depending on the frequency of this dipole moment, and the frequency of the electric field, an atom will either be pushed into the areas of maximum light intensity, or into the areas of minimum light intensity.

Once the atoms were loaded onto the grid, the team initialised the register, that is, they set all the atoms to the state corresponding with 0 (zero). The team took photographs of the atoms in their potential wells using an intensified CCD camera. Then, using a polarised laser, the team performed an operation known as a spin-flip on two of the atoms, switching them to the state corresponding to 1.

Next, the team bombarded the array with a laser tuned to the state-0 atoms, to check that the information had genuinely been transferred to the register. The laser knocked the state-0 atoms off the carrier wave, leaving the state-1 atoms behind. Another picture from their CCD imaging system shows the state-1 atoms are exactly where they were at the beginning of the experiment.

The team is now working to create a quantum gate in which two or more qubits of the register will interact in a controlled way. Dominik Schrader, the lead scientist, he hopes to get there in two years. ®

Related stories

Computing needs a Grand Challenge
Supercool atoms and quantum computing
Japanese boffins advance quantum computing

The Essential Guide to IT Transformation

More from The Register

next story
Just TWO climate committee MPs contradict IPCC: The two with SCIENCE degrees
'Greenhouse effect is real, but as for the rest of it ...'
Asteroid's DINO KILLING SPREE just bad luck – boffins
Sauricide WASN'T inevitable, reckon scientists
Brit amateur payload set to complete full circle around PLANET EARTH
Ultralight solar radio tracker in glorious 25,000km almost-space odyssey
Boffins spot weirder quantum capers as neutrons take the high road, spin takes the low
Cheshire cat effect see neutrons and their properties walk different paths
NASA Mars rover FINALLY equals 1973 Soviet benchmark
Yet to surpass ancient Greek one, however
Famous 'Dish' radio telescope to be emptied in budget crisis: CSIRO
Radio astronomy suffering to protect Square Kilometre Array
prev story

Whitepapers

7 Elements of Radically Simple OS Migration
Avoid the typical headaches of OS migration during your next project by learning about 7 elements of radically simple OS migration.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Solving today's distributed Big Data backup challenges
Enable IT efficiency and allow a firm to access and reuse corporate information for competitive advantage, ultimately changing business outcomes.
A new approach to endpoint data protection
What is the best way to ensure comprehensive visibility, management, and control of information on both company-owned and employee-owned devices?