Feeds

Astronomers weigh ultra-cool brown dwarf

He ain't heavy

  • alert
  • submit to reddit

Build a business case: developing custom apps

An international team of astronomers have been able to measure the mass of an ultra-cool brown dwarf "star", and its binary companion, directly, for the first time.

Just over 60 times the mass of Jupiter, the brown dwarf was first detected in 2000 when Hubble spotted it orbiting the poetically named 2MASSW J0746425+2000321.

Because the two "stars" orbit each other so closely - separated by a mere 0.18 arc seconds - the researchers needed incredibly high resolution images to follow the intricacies of their interaction. They made observations with the ground-based Keck, Gemini and VLT, as well as Hubble. Keck, Gemini and the VLT all have powerful adaptive optics systems that correct for atmospheric turbulence, not a factor for the space-based Hubble.

The astronomers, led by Hervé Bouy from the Max Planck Institute in Germany, tracked the binary system for four years. Using the data they collected, they were able to reconstruct the whole ten-year orbit of the pair. Once this was known, they could calculate the masses using Kepler's laws.

The more massive component of the system is just 8.5 per cent of our sun's mass, just over the threshold for nuclear ignition. Its companion, meanwhile has only 6.6 per cent of the mass of the sun. This means it is not really a star at all, but a "sub-stellar" object or brown dwarf.

A brown dwarf is an object that exists somewhere on the continuum between the lightest stars and the heaviest planets. It is not massive enough for nuclear fusion to have started in the core. For fusion to start, a star must be at least 7.5 per cent of the mass of the sun, or 75 times the mass of Jupiter.

Brown dwarves have been theoretically predicted for a long time, but were only discovered in 1995. Candidates were identified by their colour and brightness, but the only certain way to classify an object as a brown dwarf is by directly measuring its mass.

The challenge is that there is no way to measure a star's mass unless it is in a binary system, and brown dwarf binaries are particularly hard to resolve, because they tend to be very close to one another, and not especially bright.

In a statement, the Journal of Astronomy and Astrophysics said: "The mass measurement performed by Hervé Bouy and his colleagues is thus a major step toward our understanding of these sub-stellar objects that occupy the gap between stars and planets". ®

Bootnote

In a fabulous twist of fate, one of the researchers on the team is actually called Henri Boffin. Marvellous stuff.


Related stories

US orbiter detects non-English language signals
NASA to grow Brit strawberries on Mars
ESA to probe Earth's magnetic field

Secure remote control for conventional and virtual desktops

More from The Register

next story
Gigantic toothless 'DRAGONS' dominated Earth's early skies
Gummy pterosaurs outlived toothy competitors
Vulture 2 takes a battering in 100km/h test run
Still in one piece, but we're going to need MORE POWER
Boffins ID freakish spine-smothered prehistoric critter: The CLAW gave it away
Bizarre-looking creature actually related to velvet worms
CRR-CRRRK, beep, beep: Mars space truck backs out of slippery sand trap
Curiosity finds new drilling target after course correction
'Leccy racer whacks petrols in Oz race
ELMOFO rakes in two wins in sanctioned race
Astronomers scramble for obs on new comet
Amateur gets fifth confirmed discovery
Boffins build CYBORG-MOTHRA but not for evil: For search & rescue
This tiny bio-bot will chew through your clothes then save your life
What does a flashmob of 1,024 robots look like? Just like this
Sorry, Harvard, did you say kilobots or KILLER BOTS?
NASA's rock'n'roll shock: ROLLING STONE FOUND ON MARS
No sign of Ziggy Stardust and his band
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Top 10 endpoint backup mistakes
Avoid the ten endpoint backup mistakes to ensure that your critical corporate data is protected and end user productivity is improved.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
Rethinking backup and recovery in the modern data center
Combining intelligence, operational analytics, and automation to enable efficient, data-driven IT organizations using the HP ABR approach.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.