Feeds

Software engineers – the ultimate brain scientists?

Part I: Everything you know about AI is probably wrong

  • alert
  • submit to reddit

HP ProLiant Gen8: Integrated lifecycle automation

Guest Opinion Bill Softky is a scientist at the Redwood Neuroscience Institute, founded by Jeff Hawkins. He has worked as a software architect, visualization designer, and educator.

Can software engineers hope to create a digital brain? Not before understanding how the brain works, and that's one of the biggest mysteries left in science. Brains are hugely intricate circuits of billions of elements. We each have one very close by, but can't open it up: it's the ultimate Black Box.

The most famous engineering brain models are "Neural Networks" and "Parallel Distributed Processing." Unfortunately both have failed as engineering models and as brain models, because they make certain assumptions about what a brain should look like.

The trouble is, real problems such as robotic motion and planning, audio or visual segmentation, or real-time speech recognition are not yet well enough understood to justify any particular circuit design, much less "neural" ones. A neuron is the brain's computational building block, its "transistor". So the "neurons" and "networks" of those models are idealized fantasies designed to support mathematically elegant theories, and have not helped to explain real brains.

There is an abundance of research on brains, discovering which areas light up when you solve certain problems, which chemicals are outside and inside neurons, what drugs change one?s moods, all amounting to thousands of research papers, thousands of researchers.

But there remain two huge mysteries: what the brain's neural circuit really is, and what it does.

Neurons

Neurons

Here's what we already know about brain circuitry.

We know that neurons are little tree-shaped cells with tiny branches gathering electrochemical input, and a relatively long output cable which connects to other neurons. Neurons are packed cheek-to-jowl in the brain: imagine a rainforest in which the trees and vines are so close their trunks all touch, and their branches are completely intertwined. A big spaghetti mess, with each neuron sending to and receiving from thousands of others.

It's not a total hash; like a rainforest, that neural tangle has several distinct layers. And fortunately, those layers look pretty much the same everywhere in the main part of the brain, so there is hope that whatever one layered circuit does with its inputs (say, visual signals), other layers elsewhere may be doing something similar with their inputs.

OK, so we know what a brain circuit looks like, in the same sense that we know what a CPU layout looks like. But for several reasons, we don't know how it works,.

First, we don't know how a single neuron works. Sure, we know that in general a neuron produces more output pulses when it gets more inputs. But we don't know crucial details: depending on dozens of (mostly unknown) electrochemical properties, that neuron might be adding up its inputs, or multiplying them, or responding to averages, or responding to sudden changes. Or maybe doing one function at some times, on some of its branches, and other functions on other branches or at other times. For now, we can't measure brain neurons well enough to more than guess their input/output behavior.

Second, we can't tell how the neurons are connected. Sure, neurons are connected to neighboring neurons. But that isn't very helpful. It's like saying that chips in a computer are connected to neighboring chips. It doesn't explain the specific circuitry. The best biologists can do is trace connections between handfuls of neurons at a time in a dead brain, and if they're lucky, they can even record the simultaneous outputs from a handful of neurons in a live brain. But all the interesting neural circuits contain thousands to millions of neurons, so measuring just a few is hopelessly inadequate, like trying to understand a CPU by measuring the connections between - or the voltages on - a few random transistors.

Third, we don't understand neurons' electrical code. We do know that neurons communicate by brief pulses, and that the pulses from any one neuron occur at unpredictable times. But is that unpredictability a random noise, like the crackle of static, or a richly-encoded signal, like the crackle of a modem? Must the recipient neurons average over many input pulses, or does each separate pulse carry some precise timing?

Finally, we don't know how brains learn. We're pretty sure that learning mostly involves the changes in connections between neurons, and those connections form and strengthen based on local voltages and chemicals. But it's devilishly hard even to record from two interconnected neurons, much less watch the connection change while knowing or controlling everything affecting it. And what about the factors which create brand-new connections, or kill off old ones? Those circuit changes are even stronger, yet nearly impossible to measure.

So here's what we don't know about brain circuitry: we don't know what a single neuron does, what code they use, how they are connected, or how the connections change with learning. Without such knowledge, we can't reverse-engineering brains to deduce their function from their structure.

The Power of One eBook: Top reasons to choose HP BladeSystem

Next page: Neural behavior

More from The Register

next story
Apple fanbois SCREAM as update BRICKS their Macbook Airs
Ragegasm spills over as firmware upgrade kills machines
HIDDEN packet sniffer spy tech in MILLIONS of iPhones, iPads – expert
Don't panic though – Apple's backdoor is not wide open to all, guru tells us
NO MORE ALL CAPS and other pleasures of Visual Studio 14
Unpicking a packed preview that breaks down ASP.NET
Captain Kirk sets phaser to SLAUGHTER after trying new Facebook app
William Shatner less-than-impressed by Zuck's celebrity-only app
Cheer up, Nokia fans. It can start making mobes again in 18 months
The real winner of the Nokia sale is *drumroll* ... Nokia
Mozilla fixes CRITICAL security holes in Firefox, urges v31 upgrade
Misc memory hazards 'could be exploited' - and guess what, one's a Javascript vuln
EU dons gloves, pokes Google's deals with Android mobe makers
El Reg cops a squint at investigatory letters
Chrome browser has been DRAINING PC batteries for YEARS
Google is only now fixing ancient, energy-sapping bug
prev story

Whitepapers

Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Reducing security risks from open source software
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.