Feeds

Bell Labs demoes 19.2Mbps 3G chips

BLAST off

  • alert
  • submit to reddit

New hybrid storage solutions

Boffins at Lucent Technologies' Bell Labs have successfully tested two prototype ultra-fast mobile chips at speeds of up to 19.2Mbps.

By comparison, chips destined for the fastest 3G networks today offer maximum speeds of roughly 2.5 Mbps.

The two prototype Bell Labs chips, which conform to industry standards for size and power consumption, are based on technology called Bell Labs Layered Space-Time (BLAST).

BLAST uses multiple antennas at the terminal and base station to send and receive wireless signals at ultra-high speeds. It relies on innovative signal processing techniques to send and successfully decode several transmissions within the same frequency band. When utilised in base station equipment and mobile devices, this technology permits far higher transmission speeds to be achieved.

Implementing multiple input/multiple output (MIMO) wireless network technology on silicon to take advantage of the BLAST has proved a challenge for the industry. Now Lucent believes it's cracked the problem, opening up the path to commercial deployment of the technology over an (as yet) unspecified timeframe.

"We believe ours are the world's first chips that can be used in handsets with four antennas, and therefore the first capable of such high transmission speeds," said Ran Yan, vice president, Wireless Research at Bell Labs.

"Not only have we proven the commercial feasibility of BLAST, but we've also verified the performance figures our researchers predicted when they first theorised that it might be possible to exploit interference to achieve faster and more efficient communications."

Lucent is working to speed the commercial introduction of MIMO technology by making its family of Flexent OneBTS base stations MIMO-ready. It believes the technology has the potential to greatly enhance the coverage, capacity and speed of 3G network

Lucent plans to license the chips' designs to mobile handset, PC card and other device manufacturers that may be interested in integrating MIMO into future products. The company is also working with 3G wireless standards groups to ensure that emerging MIMO standards support BLAST.

A Bell Labs research team in Sydney, Australia, designed the chips in collaboration with researchers at Bell Labs' Crawford Hill facility in New Jersey where BLAST was invented. The two chips, one for detecting BLAST signals and the other for decoding them, have been tested successfully in four-antenna terminal configuration that also uses four transmit antennas at the base station.

Lucent hopes different modulation schemes and antenna configurations can be used to achieve even higher data rates for future generations of BLAST chips. ®

How BLAST works

From Lucent's press release:

BLAST technology exploits a theoretical concept that many researchers believed was impossible. In most wireless environments, radio signals do not travel directly from transmitter to receiver, but are randomly scattered in transit before they reach the receiver. The prevailing view was that to have good reception, each of these signals needed to occupy a separate frequency, similar to the way in which radio or TV stations within a geographical area are allocated separate frequencies. Otherwise, the interference between stations operating on the same frequency would be too overwhelming to achieve quality communications.

But BLAST's inventors theorised, and later proved, that it is possible to have several transmissions occupying the same frequency band. Additionally, they realised that it is possible to use the scattering of these signals to enhance, rather than degrade, transmission accuracy by treating the scattered paths as separate, parallel sub-channels.

BLAST splits a single user's data stream into multiple sub-streams and uses an array of transmitter antennas to simultaneously launch the streams in parallel. All the sub-streams are transmitted in the same frequency band, so spectrum is used very efficiently. At the receiver, an array of antennas is again used to pick up the multiple transmitted sub-streams. Using the multiple antenna technique, the rate of transmission is increased roughly in proportion to the number of antennas used to transmit the signal.

Related Stories

Boffins triple mobile network capacity
Operators squeeze 3G suppliers
WiFi hotspots pose threat to US 3G - US Bancorp
The quest for the killer mobile app - beyond UIs, browsers
Mobile startups dismiss 3G - for now

Secure remote control for conventional and virtual desktops

More from The Register

next story
Brit telcos warn Scots that voting Yes could lead to HEFTY bills
BT and Co: Independence vote likely to mean 'increased costs'
Phones 4u slips into administration after EE cuts ties with Brit mobe retailer
More than 5,500 jobs could be axed if rescue mission fails
Radio hams can encrypt, in emergencies, says Ofcom
Consultation promises new spectrum and hints at relaxed licence conditions
Blockbuster book lays out the first 20 years of the Smartphone Wars
Symbian's David Wood bares all. Not for the faint hearted
'Serious flaws in the Vertigan report' says broadband boffin
Report 'fails reality test' , is 'simply wrong' and offers ''convenient' justification for FTTN says Rod Tucker
This flashlight app requires: Your contacts list, identity, access to your camera...
Who us, dodgy? Vast majority of mobile apps fail privacy test
Apple Watch will CONQUER smartwatch world – analysts
After Applelocalypse, other wristputers will get stuck in
prev story

Whitepapers

Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
Top 5 reasons to deploy VMware with Tegile
Data demand and the rise of virtualization is challenging IT teams to deliver storage performance, scalability and capacity that can keep up, while maximizing efficiency.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.