Feeds

Crypto boffins: let's get physical

Plastic Tokenism

  • alert
  • submit to reddit

Beginner's guide to SSL certificates

Researchers at MIT have developed a physical token, based on tiny glass spheres encased in epoxy resin, as a more secure alternative to generating cryptographic keys electronically.

With computers getting ever more powerful, especially when quantum-based technology come on the scene, some predict the mathematical algorithms which underpin current encryption techniques could be broken.

Such computers may be capable of factorising the product of very large prime numbers, but would struggle to unravel a one-way function based on a physical token. So the theory goes.

The MIT boffins created a physical one-way function by connecting cryptography with mesoscopics, the study of how waves travel in disordered materials.

In the September 20 issue of Science they show a simple token (costing pennies) made of tiny glass spheres in a clear epoxy containing around one trillion bits of data in the locations of the spheres.

Laser light shined on the token produces a speckle pattern, which is then recorded and used to generate a cryptographic key. Terminals (smart card readers, for example) can send this key over a conventional communications channel to identify and authenticate a token.

The researchers believe this new approach will improve information security on the Internet and elsewhere.

They believe it is technologically unfeasible to duplicate the epoxy resin. Also an enormous number of different keys can be produced as a function of how the laser reads it.

The data is stored in a material, rather than in a circuit, which means that the technology can also be used as part of a device that needs authentication, such as a security sensor, and is more tamper proof.

The low cost and tamper-proof characteristics may lead to applications in everyday objects such as envelopes and bank notes, the researchers predict.

"These capabilities are all of great interest to the cryptographic community," says Neil Gershenfeld, associate professor and director of the Center for Bits and Atoms at MIT, who led the work. "The introduction of physical one-way functions provides a new tool for them that promises to help make information security more accessible and more reliable." ®

External Links

New approach to secure digital information developed at MIT

Choosing a cloud hosting partner with confidence

More from The Register

next story
SMASH the Bash bug! Apple and Red Hat scramble for patch batches
'Applying multiple security updates is extremely difficult'
Apple's new iPhone 6 vulnerable to last year's TouchID fingerprint hack
But unsophisticated thieves need not attempt this trick
Hackers thrash Bash Shellshock bug: World races to cover hole
Update your gear now to avoid early attacks hitting the web
Oracle SHELLSHOCKER - data titan lists unpatchables
Database kingpin lists 32 products that can't be patched (yet) as GNU fixes second vuln
Who.is does the Harlem Shake
Blame it on LOLing XSS terroristas
Researchers tell black hats: 'YOU'RE SOOO PREDICTABLE'
Want to register that domain? We're way ahead of you.
Stunned by Shellshock Bash bug? Patch all you can – or be punished
UK data watchdog rolls up its sleeves, polishes truncheon
Ello? ello? ello?: Facebook challenger in DDoS KNOCKOUT
Gets back up again after half an hour though
prev story

Whitepapers

Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.