Feeds

Boffins make silicon shine

First step toward better optical networks, light-driven processors

  • alert
  • submit to reddit

Scientists at the UK's University of Surrey have figured out how to make silicon generate light at room temperature.

It may not sound much - however, the discovery paves the way not only for better optical-to-electrical connections of the kind that connected computers to optical networks, but to give Moore's Law - that chips double in performance and and halve their size every 18 months - a push beyond the limits of micro-electronic circuitry.

The Surrey team, led by Professor Kevin Homewood, have created a silicon light emitting diode. While semiconductor LEDs have been around for ages, ones made out of silicon - the same material used to make microprocessors - haven't.

The team's breakthrough centres on inserting extra silicon atoms into a chip creating loop-like flaws within the silicon that makes up chip's circuitry. The process of confining the chip's electrons alters the material's properties, allowing it to emit light. The loops, called dislocations, constrict the electrons to such a degree that they emit light efficiently at room temperature.

Building light-emitting silicon that's efficient enough for optical networking devices is a long way off - intra-chip optical communications are even further away. However, it is the first step in connecting silicon chips directly to optical data links and eliminating all the kludgy optoelectronic circuitry needed to interface the two domains today.

That, said Homewood, will allow optical connections to shrink at the same pace as microprocessors, making them more efficient and more practical for small-scale networks and possibly even buses within computers themselves.

Ultimately, the technique might be used even within processors once current chip technology reaches the point where electronics no longer operate. Intel claims to have prototype chips whose gate lengths - the effective size of their component transistors - are down to the width of three atoms, promising processors capable of running at 50GHz.

Optical processing techniques could theoretically allow for even higher clock speeds in much smaller and smaller chips. ®

Related Link

The University of Surrey's work is detailed in the current issue of Nature here

Whitepapers

SANS - Survey on application security programs
In this whitepaper learn about the state of application security programs and practices of 488 surveyed respondents, and discover how mature and effective these programs are.
Combat fraud and increase customer satisfaction
Based on their experience using HP ArcSight Enterprise Security Manager for IT security operations, Finansbank moved to HP ArcSight ESM for fraud management.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Top three mobile application threats
Learn about three of the top mobile application security threats facing businesses today and recommendations on how to mitigate the risk.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.