Feeds

Quantum crypto secrets from Japan

Data sent along 200m of optical fibre at 1 kbps

  • alert
  • submit to reddit

Beginner's guide to SSL certificates

Mitsubishi and Hokkaido University have completed a latest round of experiments in quantum cryptography over optical fibres. The two organisations say that their quantum cryptographic system is a success, and could have important implications for optical fibre networks already in use.

The data was sent along 200 meters of optical fibre at a rate of one kbps. Not exactly fast, but there we go. The researchers reported a quantum bit rate error of one percent, which was kept low by the ability of the system to compensate for fluctuations in the phase and polarisation of the light.

Quantum cryptography was first demonstrated in the US in 1989. It exploits the bizarreness of the quantum world, specifically the way a quantum system responds to observation.

Two parties wish to share a key that they can used to encrypt messages sent between them. To establish this key, the first party encodes information in the quantum states of individual optical photons and transmits them to the second party.

The receiver sorts the incoming photons according to their states and sends them to sensitive photo-detectors.

Because of the quantum nature of light, any potential eavesdroppers disrupt the system, changing the nature of the transmission so that it becomes meaningless, simultaneously alerting both parties to the eavesdroppers' presence.

Early experiments in the field involved transmission of a message across a short distance in a vacuum. This is one of few successful experiments using optical fibre as the transmission medium, and researchers are claiming that it is the first such experiment to be conducted in Japan.

Quantum cryptography is an important area of research because its security is not dependent of massively complex algorithms that could be foiled by a sufficiently powerful computer or a sustained attack. Because it is based on fundamental physical properties of the world, it is essentially uncrackable.

Sounds fairly groovy to us. ®

Related Stories

Boffins unveil world's most powerful quantum computer
Boffins predict uncrackable quantum data tech

Beginner's guide to SSL certificates

More from The Register

next story
Azure TITSUP caused by INFINITE LOOP
Fat fingered geo-block kept Aussies in the dark
NASA launches new climate model at SC14
75 days of supercomputing later ...
Yahoo! blames! MONSTER! email! OUTAGE! on! CUT! CABLE! bungle!
Weekend woe for BT as telco struggles to restore service
You think the CLOUD's insecure? It's BETTER than UK.GOV's DATA CENTRES
We don't even know where some of them ARE – Maude
DEATH by COMMENTS: WordPress XSS vuln is BIGGEST for YEARS
Trio of XSS turns attackers into admins
Cloud unicorns are extinct so DiData cloud mess was YOUR fault
Applications need to be built to handle TITSUP incidents
BOFH: WHERE did this 'fax-enabled' printer UPGRADE come from?
Don't worry about that cable, it's part of the config
Astro-boffins start opening universe simulation data
Got a supercomputer? Want to simulate a universe? Here you go
prev story

Whitepapers

Why and how to choose the right cloud vendor
The benefits of cloud-based storage in your processes. Eliminate onsite, disk-based backup and archiving in favor of cloud-based data protection.
Getting started with customer-focused identity management
Learn why identity is a fundamental requirement to digital growth, and how without it there is no way to identify and engage customers in a meaningful way.
How to determine if cloud backup is right for your servers
Two key factors, technical feasibility and TCO economics, that backup and IT operations managers should consider when assessing cloud backup.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Internet Security Threat Report 2014
An overview and analysis of the year in global threat activity: identify, analyze, and provide commentary on emerging trends in the dynamic threat landscape.